Commits
Waiman Long committed 7d43f1ce9dd
locking/rwsem: Enable time-based spinning on reader-owned rwsem When the rwsem is owned by reader, writers stop optimistic spinning simply because there is no easy way to figure out if all the readers are actively running or not. However, there are scenarios where the readers are unlikely to sleep and optimistic spinning can help performance. This patch provides a simple mechanism for spinning on a reader-owned rwsem by a writer. It is a time threshold based spinning where the allowable spinning time can vary from 10us to 25us depending on the condition of the rwsem. When the time threshold is exceeded, the nonspinnable bits will be set in the owner field to indicate that no more optimistic spinning will be allowed on this rwsem until it becomes writer owned again. Not even readers is allowed to acquire the reader-locked rwsem by optimistic spinning for fairness. We also want a writer to acquire the lock after the readers hold the lock for a relatively long time. In order to give preference to writers under such a circumstance, the single RWSEM_NONSPINNABLE bit is now split into two - one for reader and one for writer. When optimistic spinning is disabled, both bits will be set. When the reader count drop down to 0, the writer nonspinnable bit will be cleared to allow writers to spin on the lock, but not the readers. When a writer acquires the lock, it will write its own task structure pointer into sem->owner and clear the reader nonspinnable bit in the process. The time taken for each iteration of the reader-owned rwsem spinning loop varies. Below are sample minimum elapsed times for 16 iterations of the loop. System Time for 16 Iterations ------ ---------------------- 1-socket Skylake ~800ns 4-socket Broadwell ~300ns 2-socket ThunderX2 (arm64) ~250ns When the lock cacheline is contended, we can see up to almost 10X increase in elapsed time. So 25us will be at most 500, 1300 and 1600 iterations for each of the above systems. With a locking microbenchmark running on 5.1 based kernel, the total locking rates (in kops/s) on a 8-socket IvyBridge-EX system with equal numbers of readers and writers before and after this patch were as follows: # of Threads Pre-patch Post-patch ------------ --------- ---------- 2 1,759 6,684 4 1,684 6,738 8 1,074 7,222 16 900 7,163 32 458 7,316 64 208 520 128 168 425 240 143 474 This patch gives a big boost in performance for mixed reader/writer workloads. With 32 locking threads, the rwsem lock event data were: rwsem_opt_fail=79850 rwsem_opt_nospin=5069 rwsem_opt_rlock=597484 rwsem_opt_wlock=957339 rwsem_sleep_reader=57782 rwsem_sleep_writer=55663 With 64 locking threads, the data looked like: rwsem_opt_fail=346723 rwsem_opt_nospin=6293 rwsem_opt_rlock=1127119 rwsem_opt_wlock=1400628 rwsem_sleep_reader=308201 rwsem_sleep_writer=72281 So a lot more threads acquired the lock in the slowpath and more threads went to sleep. Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Will Deacon <will.deacon@arm.com> Cc: huang ying <huang.ying.caritas@gmail.com> Link: https://lkml.kernel.org/r/20190520205918.22251-15-longman@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>