Commits
Will Deacon committed d86b8da04df
arm64: spinlock: serialise spin_unlock_wait against concurrent lockers Boqun Feng reported a rather nasty ordering issue with spin_unlock_wait on architectures implementing spin_lock with LL/SC sequences and acquire semantics: | CPU 1 CPU 2 CPU 3 | ================== ==================== ============== | spin_unlock(&lock); | spin_lock(&lock): | r1 = *lock; // r1 == 0; | o = READ_ONCE(object); // reordered here | object = NULL; | smp_mb(); | spin_unlock_wait(&lock); | *lock = 1; | smp_mb(); | o->dead = true; | if (o) // true | BUG_ON(o->dead); // true!! The crux of the problem is that spin_unlock_wait(&lock) can return on CPU 1 whilst CPU 2 is in the process of taking the lock. This can be resolved by upgrading spin_unlock_wait to a LOCK operation, forcing it to serialise against a concurrent locker and giving it acquire semantics in the process (although it is not at all clear whether this is needed - different callers seem to assume different things about the barrier semantics and architectures are similarly disjoint in their implementations of the macro). This patch implements spin_unlock_wait using an LL/SC sequence with acquire semantics on arm64. For v8.1 systems with the LSE atomics, the exclusive writeback is omitted, since the spin_lock operation is indivisible and no intermediate state can be observed. Signed-off-by: Will Deacon <will.deacon@arm.com>